direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C23×D5, C15⋊C25, C30⋊C24, D15⋊C24, D30⋊12C23, (C5×S3)⋊C24, C5⋊1(S3×C24), (C3×D5)⋊C24, C3⋊1(D5×C24), C6⋊1(C23×D5), (C2×C30)⋊6C23, C10⋊1(S3×C23), (C6×D5)⋊9C23, (S3×C10)⋊9C23, (C22×C6)⋊12D10, (C22×C10)⋊15D6, (C23×D15)⋊11C2, (C22×C30)⋊11C22, (C22×D15)⋊23C22, (D5×C22×C6)⋊6C2, (S3×C22×C10)⋊6C2, (D5×C2×C6)⋊20C22, (C2×C6)⋊7(C22×D5), (S3×C2×C10)⋊20C22, (C2×C10)⋊10(C22×S3), SmallGroup(480,1207)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — S3×C23×D5 |
Generators and relations for S3×C23×D5
G = < a,b,c,d,e,f,g | a2=b2=c2=d3=e2=f5=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, ede=d-1, df=fd, dg=gd, ef=fe, eg=ge, gfg=f-1 >
Subgroups: 7228 in 1496 conjugacy classes, 524 normal (14 characteristic)
C1, C2, C2, C3, C22, C22, C5, S3, S3, C6, C6, C23, C23, D5, D5, C10, C10, D6, D6, C2×C6, C2×C6, C15, C24, D10, D10, C2×C10, C2×C10, C22×S3, C22×S3, C22×C6, C22×C6, C5×S3, C3×D5, D15, C30, C25, C22×D5, C22×D5, C22×C10, C22×C10, S3×C23, S3×C23, C23×C6, S3×D5, C6×D5, S3×C10, D30, C2×C30, C23×D5, C23×D5, C23×C10, S3×C24, C2×S3×D5, D5×C2×C6, S3×C2×C10, C22×D15, C22×C30, D5×C24, C22×S3×D5, D5×C22×C6, S3×C22×C10, C23×D15, S3×C23×D5
Quotients: C1, C2, C22, S3, C23, D5, D6, C24, D10, C22×S3, C25, C22×D5, S3×C23, S3×D5, C23×D5, S3×C24, C2×S3×D5, D5×C24, C22×S3×D5, S3×C23×D5
(1 109)(2 110)(3 106)(4 107)(5 108)(6 111)(7 112)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 120)(16 91)(17 92)(18 93)(19 94)(20 95)(21 96)(22 97)(23 98)(24 99)(25 100)(26 101)(27 102)(28 103)(29 104)(30 105)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 34)(2 35)(3 31)(4 32)(5 33)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(91 106)(92 107)(93 108)(94 109)(95 110)(96 111)(97 112)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)(105 120)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 109)(2 110)(3 106)(4 107)(5 108)(6 116)(7 117)(8 118)(9 119)(10 120)(11 111)(12 112)(13 113)(14 114)(15 115)(16 91)(17 92)(18 93)(19 94)(20 95)(21 101)(22 102)(23 103)(24 104)(25 105)(26 96)(27 97)(28 98)(29 99)(30 100)(31 76)(32 77)(33 78)(34 79)(35 80)(36 86)(37 87)(38 88)(39 89)(40 90)(41 81)(42 82)(43 83)(44 84)(45 85)(46 61)(47 62)(48 63)(49 64)(50 65)(51 71)(52 72)(53 73)(54 74)(55 75)(56 66)(57 67)(58 68)(59 69)(60 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 93)(2 92)(3 91)(4 95)(5 94)(6 96)(7 100)(8 99)(9 98)(10 97)(11 101)(12 105)(13 104)(14 103)(15 102)(16 106)(17 110)(18 109)(19 108)(20 107)(21 111)(22 115)(23 114)(24 113)(25 112)(26 116)(27 120)(28 119)(29 118)(30 117)(31 61)(32 65)(33 64)(34 63)(35 62)(36 66)(37 70)(38 69)(39 68)(40 67)(41 71)(42 75)(43 74)(44 73)(45 72)(46 76)(47 80)(48 79)(49 78)(50 77)(51 81)(52 85)(53 84)(54 83)(55 82)(56 86)(57 90)(58 89)(59 88)(60 87)
G:=sub<Sym(120)| (1,109)(2,110)(3,106)(4,107)(5,108)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,109)(2,110)(3,106)(4,107)(5,108)(6,116)(7,117)(8,118)(9,119)(10,120)(11,111)(12,112)(13,113)(14,114)(15,115)(16,91)(17,92)(18,93)(19,94)(20,95)(21,101)(22,102)(23,103)(24,104)(25,105)(26,96)(27,97)(28,98)(29,99)(30,100)(31,76)(32,77)(33,78)(34,79)(35,80)(36,86)(37,87)(38,88)(39,89)(40,90)(41,81)(42,82)(43,83)(44,84)(45,85)(46,61)(47,62)(48,63)(49,64)(50,65)(51,71)(52,72)(53,73)(54,74)(55,75)(56,66)(57,67)(58,68)(59,69)(60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,93)(2,92)(3,91)(4,95)(5,94)(6,96)(7,100)(8,99)(9,98)(10,97)(11,101)(12,105)(13,104)(14,103)(15,102)(16,106)(17,110)(18,109)(19,108)(20,107)(21,111)(22,115)(23,114)(24,113)(25,112)(26,116)(27,120)(28,119)(29,118)(30,117)(31,61)(32,65)(33,64)(34,63)(35,62)(36,66)(37,70)(38,69)(39,68)(40,67)(41,71)(42,75)(43,74)(44,73)(45,72)(46,76)(47,80)(48,79)(49,78)(50,77)(51,81)(52,85)(53,84)(54,83)(55,82)(56,86)(57,90)(58,89)(59,88)(60,87)>;
G:=Group( (1,109)(2,110)(3,106)(4,107)(5,108)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,109)(2,110)(3,106)(4,107)(5,108)(6,116)(7,117)(8,118)(9,119)(10,120)(11,111)(12,112)(13,113)(14,114)(15,115)(16,91)(17,92)(18,93)(19,94)(20,95)(21,101)(22,102)(23,103)(24,104)(25,105)(26,96)(27,97)(28,98)(29,99)(30,100)(31,76)(32,77)(33,78)(34,79)(35,80)(36,86)(37,87)(38,88)(39,89)(40,90)(41,81)(42,82)(43,83)(44,84)(45,85)(46,61)(47,62)(48,63)(49,64)(50,65)(51,71)(52,72)(53,73)(54,74)(55,75)(56,66)(57,67)(58,68)(59,69)(60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,93)(2,92)(3,91)(4,95)(5,94)(6,96)(7,100)(8,99)(9,98)(10,97)(11,101)(12,105)(13,104)(14,103)(15,102)(16,106)(17,110)(18,109)(19,108)(20,107)(21,111)(22,115)(23,114)(24,113)(25,112)(26,116)(27,120)(28,119)(29,118)(30,117)(31,61)(32,65)(33,64)(34,63)(35,62)(36,66)(37,70)(38,69)(39,68)(40,67)(41,71)(42,75)(43,74)(44,73)(45,72)(46,76)(47,80)(48,79)(49,78)(50,77)(51,81)(52,85)(53,84)(54,83)(55,82)(56,86)(57,90)(58,89)(59,88)(60,87) );
G=PermutationGroup([[(1,109),(2,110),(3,106),(4,107),(5,108),(6,111),(7,112),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,120),(16,91),(17,92),(18,93),(19,94),(20,95),(21,96),(22,97),(23,98),(24,99),(25,100),(26,101),(27,102),(28,103),(29,104),(30,105),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,34),(2,35),(3,31),(4,32),(5,33),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(91,106),(92,107),(93,108),(94,109),(95,110),(96,111),(97,112),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119),(105,120)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,109),(2,110),(3,106),(4,107),(5,108),(6,116),(7,117),(8,118),(9,119),(10,120),(11,111),(12,112),(13,113),(14,114),(15,115),(16,91),(17,92),(18,93),(19,94),(20,95),(21,101),(22,102),(23,103),(24,104),(25,105),(26,96),(27,97),(28,98),(29,99),(30,100),(31,76),(32,77),(33,78),(34,79),(35,80),(36,86),(37,87),(38,88),(39,89),(40,90),(41,81),(42,82),(43,83),(44,84),(45,85),(46,61),(47,62),(48,63),(49,64),(50,65),(51,71),(52,72),(53,73),(54,74),(55,75),(56,66),(57,67),(58,68),(59,69),(60,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,93),(2,92),(3,91),(4,95),(5,94),(6,96),(7,100),(8,99),(9,98),(10,97),(11,101),(12,105),(13,104),(14,103),(15,102),(16,106),(17,110),(18,109),(19,108),(20,107),(21,111),(22,115),(23,114),(24,113),(25,112),(26,116),(27,120),(28,119),(29,118),(30,117),(31,61),(32,65),(33,64),(34,63),(35,62),(36,66),(37,70),(38,69),(39,68),(40,67),(41,71),(42,75),(43,74),(44,73),(45,72),(46,76),(47,80),(48,79),(49,78),(50,77),(51,81),(52,85),(53,84),(54,83),(55,82),(56,86),(57,90),(58,89),(59,88),(60,87)]])
96 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | ··· | 2W | 2X | ··· | 2AE | 3 | 5A | 5B | 6A | ··· | 6G | 6H | ··· | 6O | 10A | ··· | 10N | 10O | ··· | 10AD | 15A | 15B | 30A | ··· | 30N |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 5 | 5 | 6 | ··· | 6 | 6 | ··· | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 15 | 15 | 30 | ··· | 30 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 5 | ··· | 5 | 15 | ··· | 15 | 2 | 2 | 2 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | 4 | 4 | ··· | 4 |
96 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D10 | D10 | S3×D5 | C2×S3×D5 |
kernel | S3×C23×D5 | C22×S3×D5 | D5×C22×C6 | S3×C22×C10 | C23×D15 | C23×D5 | S3×C23 | C22×D5 | C22×C10 | C22×S3 | C22×C6 | C23 | C22 |
# reps | 1 | 28 | 1 | 1 | 1 | 1 | 2 | 14 | 1 | 28 | 2 | 2 | 14 |
Matrix representation of S3×C23×D5 ►in GL6(𝔽31)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
0 | 0 | 0 | 0 | 1 | 30 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 30 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
30 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 1 | 0 | 0 |
0 | 0 | 11 | 19 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 30 | 0 | 0 | 0 | 0 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,30],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,30],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,30,30],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,30,0],[0,30,0,0,0,0,1,18,0,0,0,0,0,0,30,11,0,0,0,0,1,19,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,30,0,0,0,0,30,0,0,0,0,0,0,0,30,11,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
S3×C23×D5 in GAP, Magma, Sage, TeX
S_3\times C_2^3\times D_5
% in TeX
G:=Group("S3xC2^3xD5");
// GroupNames label
G:=SmallGroup(480,1207);
// by ID
G=gap.SmallGroup(480,1207);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,1356,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^3=e^2=f^5=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*d*e=d^-1,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,g*f*g=f^-1>;
// generators/relations